

Reduced-order modeling and gravitational waveforms

Chad Galley (JPL/Caltech)

Motivation

- Generating waveforms can be expensive, time-consuming, and a bottleneck for practical data analysis applications
 - Template bank generation for gravitational wave searches ("curse of dimensionality")
 - Multiple waveform queries for parameter estimation (e.g., with stochastic methods)
 - Parameter space mapping, exploration, and discovery (i.e., science!)
 - Accessibility to broader scientific communities and the public
- Goals: To cheaply and quickly predict gravitational waveforms that are otherwise prohibitively expensive to mass-produce.
 - Numerical relativity waveforms of compact binary coalescences
 - Can take weeks to months to complete one simulation and corresponding waveform
 - 3 points only in each of the 7 parameter dimensions requires 2187 simulations!
 - Extreme Mass Ratio Inspirals (EMRIs)
 - Continuous gravitational waves

Reduced-Order Modeling (ROM)

Overview

Reduced Basis

Basic Idea

Can find a linear approximation space that is nearly optimal

Set of waveforms \mathcal{F}

1) Choose any parameter,

$$e_1 = h(q_1), C_1 = \{e_1\}$$

2) <u>Greedy search</u> - Find the parameter that maximizes:

$$||h_q - P_1(h_q)||, P_1(h_q) = e_1 \langle e_1, h_q \rangle$$

3) Orthogonalization to get basis vector e_2 $C_2 = \{e_1, e_2\}, C_1 \subset C_2$

"Training space"

Output:

- 1) "Most relevant" parameters and waveforms
- 2) A nested/hierarchical basis
- Maximum projection errors converge exponentially

Reduced Basis

Lessons learned

- Arrange and transform the training data into a form that is smooth with parameter variations (i.e., "boring") [Blackman et al (2014)]
 - A 0PN waveform has a reduced basis with one element when parameterizing by phase instead of frequency
- The greedy algorithm is highly flexible and can adapt to many different types of strategies

- Randomly resample the training set after each iteration [Blackman et al (2014)]
- Use an error metric that is suitable to the problem and parameterization
- Divide and conquer the training space (with random resampling) [Galley (unpublished)]
- Waveform representation by a reduced basis is robust to different detector PSDs [Field et al (2011)]
- Even if target ROM accuracy is small, it is typically useful to build the Reduced Basis with a much higher accuracy.
- Lower-accuracy waveform models (e.g., Phenom*, *EOB*) are helpful to inform for which parameters to run expensive simulations [Blackman et al (2015)]
 - Side-effect price to pay: More parameters tend to be selected than are actually needed in the end.
 (EOBNRHMv2 implied 22 simulations where the actual number is about 7.)

Empirical Interpolation

Basic Idea

- A reduced basis is built to accurately span the waveform space
 - Therefore, all functions and functionals of waveforms can be accurately represented by the reduced basis
 - Including an interpolant built from the empirically found reduced basis

- Empirical interpolation is essentially the standard interpolation problem but constructed using the application-specific reduced basis instead of a generic basis (e.g., Chebyshev polynomials)
 - Interpolation nodes are selected by another greedy algorithm that minimizes the interpolation error

- Empirical interpolation errors are provably proportional to the maximum projection errors of the reduced basis.
 - In ROMs to date, empirical interpolation is within ~100x of the reduced basis representation error.

Surrogate

Basic Idea

- A "grid" of points in parameter space and physical (i.e., time/frequency) space is built for the features of the specific waveform family by RB and EIM
- Surrogate is constructed by fitting for the parameter variation at each empirical interpolation node (e.g., time)
 - (show equation), (highlight speed-up relative to nominal waveform generation times)

Reduced-Order Quadratures

Basic Idea

- (Brief overview of what it is)
- (Parameter estimation applications, even for NR waveforms via its surrogate)
- (Mention small start-up cost before online stage)

Results

Post-Newtonian inspirals

- (non-spinning reduced basis)
- (non-precessing reduced basis)
- (quasi-normal mode ringdowns reduced basis)

Effective One-Body surrogates

- (EOBNRv2 and EOBNRHMv2)
- (SEOBv?)
- (TEOB)

Numerical Relativity surrogates

- (non-spinning BBH)
- (non-precessing BBH)
- (precessing BBH)

(black hole Green's function surrogate for scalar self-force)

(that recent paper by the Scottish folks – reduced basis for timing models)

Reduced-Order Quadratures

(look-up Priscilla's papers to remind myself what they did exactly)

Blackman, et al (2015)

Short-comings and mitigations

- ROMs are accurate within the parameter domain of the training space
 - Caution must be taken when extrapolating outside the training space
 - Mitigations:
 - Increase the domain of the training space
 - Find a smoother waveform parameterization so that extrapolation is less severe
- Reduced-Order Quadratures rely on the linearity of the waveform itself
 - Smart (i.e., nonlinear) parameterizations for RB construction are not helpful here
 - Mitigations:
 - None
 - But, one can still use a surrogate (if needed) for rapid waveform generation in the integrand
- Offline generation of the training set can take a long time
 - Example: Took 2 years to generate 22 NR training waveforms for the non-spinning BBH surrogate
 - Mitigations:
 - Progress with time: Took ~2 years to generate (a few hundred) NR training waveforms for the precessing BBH surrogate
 - Adjust the training space sampling strategy for the Reduced Basis greedy algorithm
- ROM works best on a training set of C^{infinity} functions
 - Can still work on Cⁿ functions but yields a less compact reduced basis (e.g., EOBNRv2)
 - Mitigation:
 - (fill this out in a clear way)

Outlook

- (outlook)
- (rompy code public repo)

jpl.nasa.gov